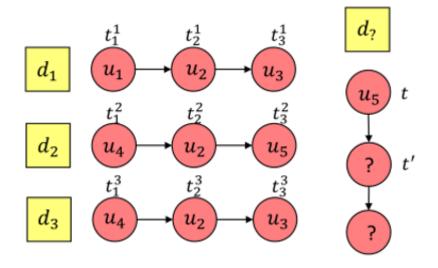
MS-HGAT: Memory-enhanced Sequential Hypergraph Attention Network for Information Diffusion Prediction

Ling Sun, Yuan Rao*, Xiangbo Zhang, Yuqian Lan, Shuanghe Yu

Xi'an Key Laboratory of Social Intelligence and Complexity Data Processing, School of Software Engineering, Xi'an Jiaotong University, China Shaanxi Joint Key Laboratory for Artifact Intelligence, China {sunling, nick1001, Yuqian_Lan_xjtu, yushuanghe1997}@stu.xjtu.edu.cn, raoyuan@mail.xjtu.edu.cn

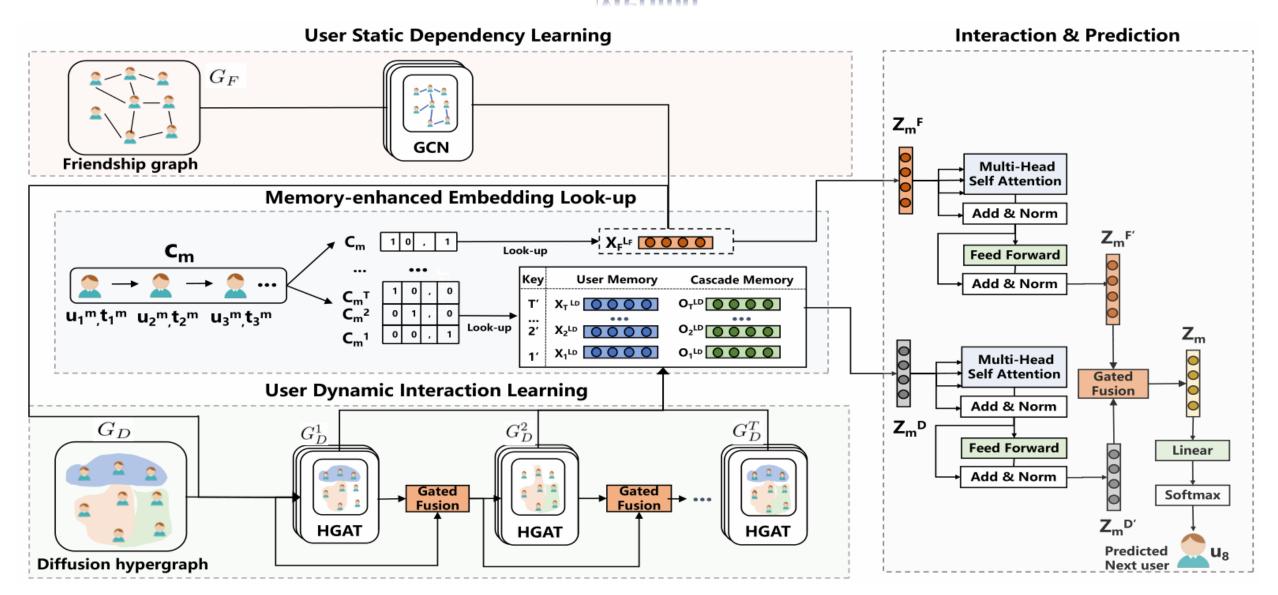
https://github.com/slingling/MS-HGAT

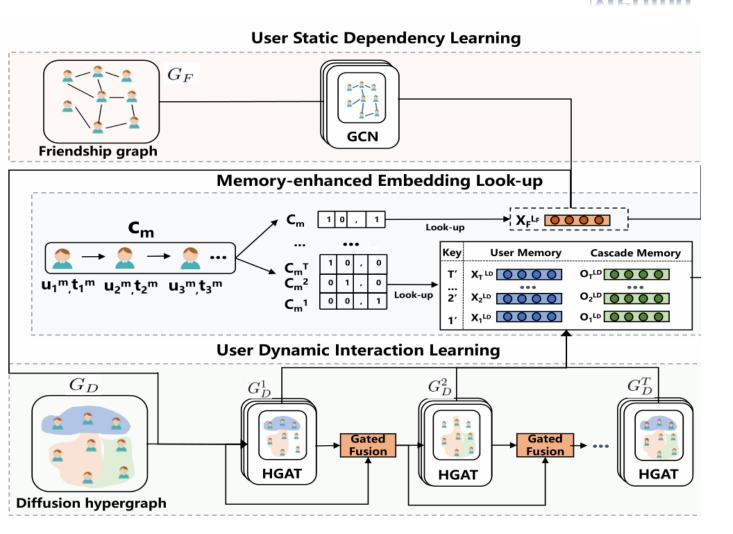
Introduction



Previous methods usually focus on the order or structure of the infected users in a single cascade, thus ignoring the global dependencies of users and cascades, limiting the performance of prediction.

To address the above issues, this paper propose a novel information diffusion prediction model named Memory-enhanced Sequential Hypergraph Attention Networks (MS-HGA T).





$$U = \{u_{1}, u_{2}, ..., u_{n}\}, |U| = N$$

$$C = \{c_{1}, c_{2}, ..., c_{M}\}, |C| = M$$

$$G_{F} = (U, E)$$

$$G_{D} = \{G_{D}^{t} | t = 1, 2, ..., T\}, G_{D}^{t} = (U^{t}, \mathcal{E}^{t})$$

$$c_{m} = \{(u_{i}^{m}, t_{i}^{m}) | u_{i}^{m} \in U\}$$

$$\mathbf{X}_{F}^{t+1} = \sigma \left(\tilde{\mathbf{D}_{F}}^{-\frac{1}{2}} \tilde{\mathbf{A}_{F}} \tilde{\mathbf{D}_{F}}^{-\frac{1}{2}} \mathbf{X}_{F}^{t} \mathbf{W}_{F}\right)$$
(1)

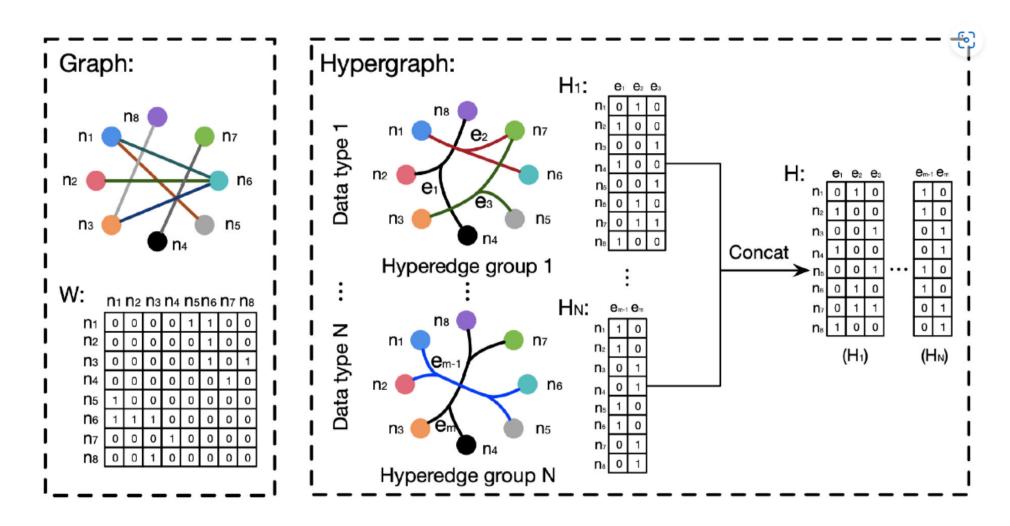
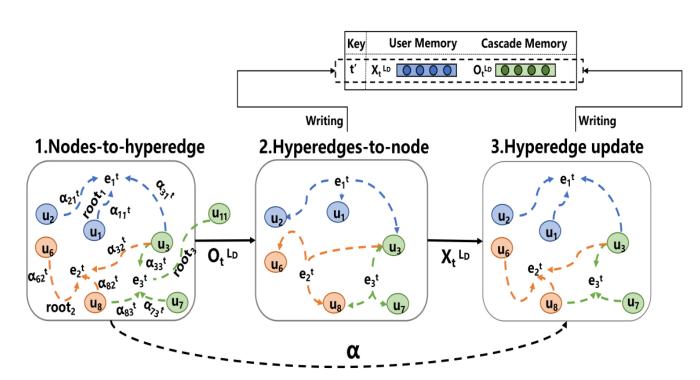


Figure 2: The comparison between graph and hypergraph.



Nodes-to-hyperedge aggregation

$$\mathbf{o}_{j,t}^{l+1} = \sigma(\sum_{u_i^t \in e_j^t} \alpha_{ij}^t \mathbf{W}_1 \mathbf{x}_{i,t}^l)$$
 (2)

$$\alpha_{ij}^{t} = \frac{\exp(-\operatorname{dis}(\mathbf{W}_{1}\mathbf{x}_{i,t}^{l}, \mathbf{W}_{1}\mathbf{r}_{j}^{l}))}{\sum_{u_{p}^{t} \in e_{j}^{t}} \exp(-\operatorname{dis}(\mathbf{W}_{1}\mathbf{x}_{p,t}^{l}, \mathbf{W}_{1}\mathbf{r}_{j}^{l}))}$$
(3)

Hyperedges-to-node aggregation

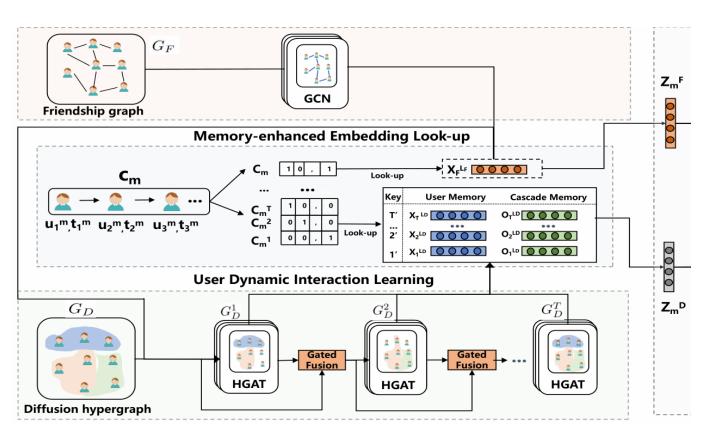
$$\mathbf{x}_{i,t}^{l+1} = \sigma(\sum_{e_j^t \in \mathcal{E}_i^t} \mathbf{W}_2 \mathbf{o}_{j,t}^{l+1})$$
 (4)

Update of hyperedges

$$\mathbf{o}_{j,t}^{l+1'} = \sigma(\sum_{u_i^t \in e_j^t} \alpha_{ij}^t \mathbf{W}_3 \mathbf{x}_{i,t}^{l+1})$$
 (5)

Memory Module

$$M_D = \left\{ t' : (X_t^{L_D}, O_t^{L_D}) \right\}, t = 1, 2, ..., T$$
 (6)



Gated Fusion

$$\mathbf{x}_{i,t+1}^{0} = g_{R_{1}} \mathbf{x}_{i,t}^{L_{D}} + (1 - g_{R_{1}}) \mathbf{x}_{i,t}^{0}$$

$$g_{R_{1}} = \frac{\exp(\mathbf{W}_{Z_{1}}^{T} \sigma(\mathbf{W}_{R_{1}} \mathbf{x}_{i,t}^{L_{D}}))}{\exp(\mathbf{W}_{Z_{1}}^{T} \sigma(\mathbf{W}_{R_{1}} \mathbf{x}_{i,t}^{L_{D}})) + \exp(\mathbf{W}_{Z_{1}}^{T} \sigma(\mathbf{W}_{R_{1}} \mathbf{x}_{i,t}^{0}))}$$
(7)

Memory-enhanced Embedding Look-up

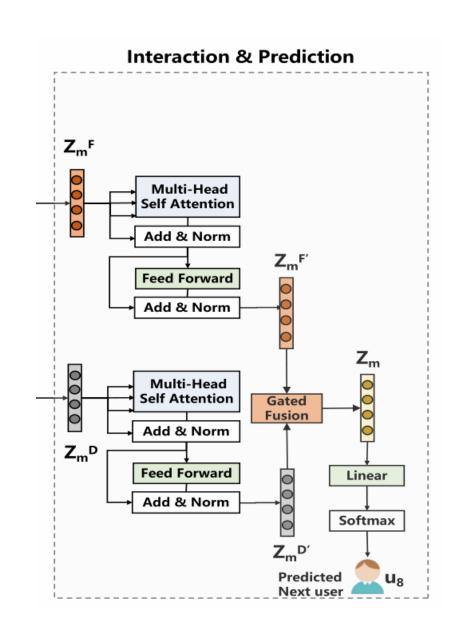
$$Z_m^F = [(x_i)] \in \mathbb{R}^{|c_m| \times d}$$

$$\begin{aligned} t_i^m &\geq t' \text{ and } t_i^m < (t+1)' \\ q_m^D &= [(x_{i,t})] \in \mathbb{R}^{|c_m| \times d} \\ p_m^D &= [(o_{m,t})] \in \mathbb{R}^{|c_m| \times d} \end{aligned}$$

Fusion Layer

$$\mathbf{Z}_{m}^{D} = g_{R_{2}}\mathbf{p}_{m}^{D} + (1 - g_{R_{2}})\mathbf{q}_{m}^{D}$$

$$g_{R_{2}} = \frac{\exp(\mathbf{W}_{Z_{2}}^{T}\sigma(\mathbf{W}_{R_{2}}\mathbf{p}_{m}^{D})}{\exp(\mathbf{W}_{Z_{2}}^{T}\sigma(\mathbf{W}_{R_{2}}\mathbf{p}_{m}^{D}) + \exp(\mathbf{W}_{Z_{2}}^{T}\sigma(\mathbf{W}_{R_{2}}\mathbf{q}_{m}^{D})}$$
(8)



Att(
$$\mathbf{Q}, \mathbf{K}, \mathbf{V}$$
) = softmax $\left(\frac{\mathbf{Q}\mathbf{K}^{T}}{\sqrt{d'}} + \mathbf{M}\right) \mathbf{V}$
 $\mathbf{h}_{i,m}^{F} = \text{Att}\left(\mathbf{Z}_{m}^{F}\mathbf{W}_{i}^{Q}, \mathbf{Z}_{m}^{F}\mathbf{W}_{i}^{K}, \mathbf{Z}_{m}^{F}\mathbf{W}_{i}^{V}\right)$ (9)
 $\mathbf{h}_{m}^{F} = \left[\mathbf{h}_{1,m}^{F}; \mathbf{h}_{2,m}^{F}; \dots; \mathbf{h}_{H,m}^{F}\right] \mathbf{W}^{O}$
 $\mathbf{Z}_{m}^{F'} = \mathbf{ReLU}\left(\mathbf{h}_{m}^{F}\mathbf{W}_{A_{1}} + \mathbf{b}_{1}\right) \mathbf{W}_{A_{2}} + \mathbf{b}_{2}$ (10)
 $\mathbf{Z}_{m} = g_{R_{3}}\mathbf{Z}_{m}^{D'} + (1 - g_{R_{3}})\mathbf{Z}_{m}^{F'}$
 $g_{R_{3}} = \frac{\exp(\mathbf{W}_{Z_{3}}^{T}\sigma(\mathbf{W}_{R_{3}}\mathbf{Z}_{m}^{D'}) + \exp(\mathbf{W}_{Z_{3}}^{T}\sigma(\mathbf{W}_{R_{3}}\mathbf{Z}_{m}^{F'})}{\exp(\mathbf{W}_{Z_{3}}^{T}\sigma(\mathbf{W}_{R_{3}}\mathbf{Z}_{m}^{F'}) + \exp(\mathbf{W}_{Z_{3}}^{T}\sigma(\mathbf{W}_{R_{3}}\mathbf{Z}_{m}^{F'})}$ (11)
 $\hat{y} = \operatorname{softmax}(\mathbf{W}_{p}\mathbf{Z}_{m} + \mathbf{Mask}_{m})$
 $\mathcal{J}(\theta) = -\sum_{j=2}^{|c_{m}|} \sum_{i=1}^{|U|} \mathbf{y}_{ji} \log(\hat{\mathbf{y}}_{ji})$ (13)

Table 1: Statistics of datasets used in our experiments

Datasets	Twitter	Douban	Android	Christ.
# Users	12,627	12,232	9,958	2,897
		Frienship		
# Links	309,631	396,580	48,573	35,624
Density	24.52	30.21	4.87	12.30
		Interaction		
# Cascades	3,442	3,475	679	589
Avg. Length	32.60	21.76	33.3	22.9
Density	8.89	6.18	2.27	4.66

Table 2: Experimental results on 4 dataset (%) (Hits@k scores for K = 10, 50, 100), scores are the higher the better.

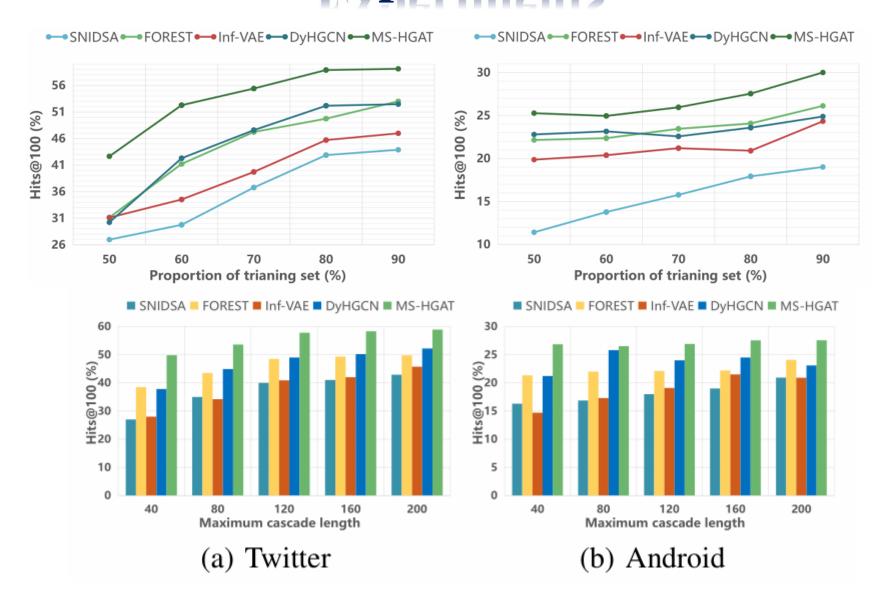
Models		Twitter		Douban			Android			Christianity		
	@10	@50	@100	@10	@50	@100	@10	@50	@100	@10	@50	@100
DeepDiffuse	5.79	10.80	18.39	9.02	14.93	19.13	4.13	10.58	17.21	10.27	21.83	30.74
Topo-LSTM	8.45	15.80	25.42	8.57	16.53	21.47	4.56	12.63	16.53	12.28	22.63	31.52
NDM	15.21	28.23	32.30	10.00	21.13	30.14	4.85	14.24	18.97	15.41	31.36	45.86
SNIDSA	25.37	36.64	42.89	16.23	27.24	35.59	5.63	15.22	20.93	17.74	34.58	48.76
FOREST	28.67	42.07	49.75	19.50	32.03	39.08	9.68	17.73	24.08	24.85	42.01	51.28
Inf-VAE	14.85	32.72	45.72	8.94	22.02	35.72	5.98	14.70	20.91	18.38	38.50	51.05
DyHGCN	31.88	45.05	52.19	18.71	32.33	39.71	9.10	16.38	23.09	26.62	42.80	52.47
MS-HGAT (ours)	33.50	49.59	58.91	21.33	35.25	42.75	10.41	20.31	27.55	28.80	47.14	55.62
NOW	35.83	52.25	59.96	22.42	37.41	44.39	11.52	21.56	28.24	28.99	48. 52	55.81

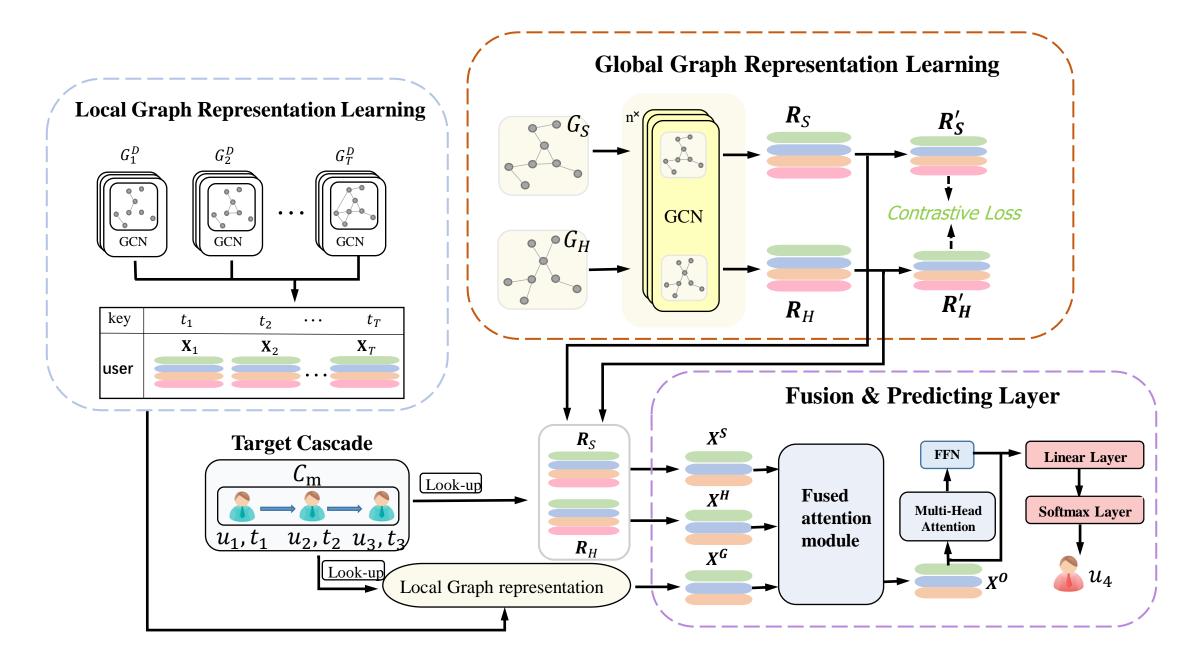
Table 3: Experimental results on 4 dataset (%) (MAP@k scores for K = 10, 50, 100), scores are the higher the better.

Models		Twitter		Douban			Android			Christianity		
	@10	@50	@100	@10	@50	@100	@10	@50	@100	@10	@50	@100
DeepDiffuse	5.87	6.80	6.39	6.02	6.93	7.13	2.30	2.53	2.56	7.27	7.83	7.84
Topo-LSTM	8.51	12.68	13.68	6.57	7.53	7.78	3.60	4.05	4.06	7.93	8.67	9.86
NDM	12.41	13.23	14.30	8.24	8.73	9.14	2.01	2.22	2.93	7.41	7.68	7.86
SNIDSA	15.34	16.64	16.89	10.02	11.24	11.59	2.98	3.24	3.97	8.69	8.94	9.72
FOREST	19.60	20.21	21.75	11.26	11.84	11.94	5.83	6.17	6.26	14.64	15.45	15.58
Inf-VAE	19.80	20.66	21.32	11.02	11.28	12.28	4.82	4.86	5.27	9.25	11.96	12.45
DyHGCN	20.87	21.48	21.58	10.61	11.26	11.36	6.09	6.40	6.50	15.64	16.30	16.44
MS-HGAT (ours)	22.49	23.17	23.30	11.72	12.52	12.60	6.39	6.87	6.96	17.44	18.27	18.40
NOW	22.78	23.24	23. 47	12.76	13.46	13.57	6.79	7.23	7.34	17.91	18.74	18.84

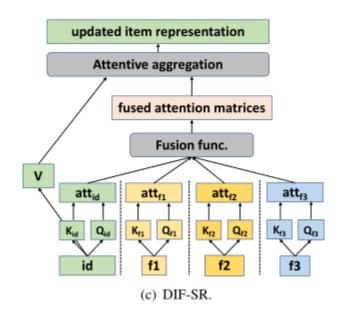
Table 4: Ablation study of MS-HGAT.

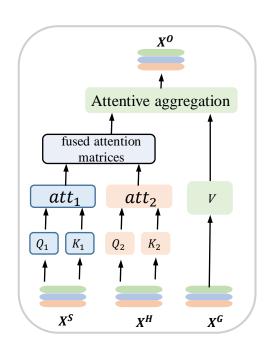
Models	Twi	itter	Android			
1.100.01	Hits@100	MAP@100	Hits@100	MAP@100		
MS-HGAT	58.91	23.30	27.55	6.96		
w/o FG	57.20	21.38	26.32	6.86		
w/o DH	57.41	22.24	26.74	6.78		
w/o UM	58.63	22.74	26.40	6.83		
w/o CM	58.32	21.96	27.09	6.77		
w/o ATTH	58.95	22.76	27.03	6.75		
w/o GF	57.93	22.19	27.26	6.89		



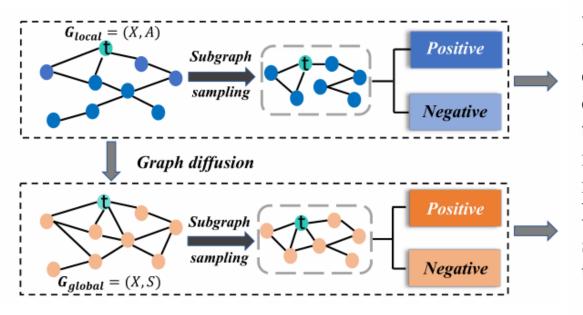


SIGIR'22 Decoupled Side Information Fusion for Sequential Recommendation





2022_IJCAI_Reconstruction Enhanced Multi-View Contrastive Learning for Anomaly Detection on Attributed Networks

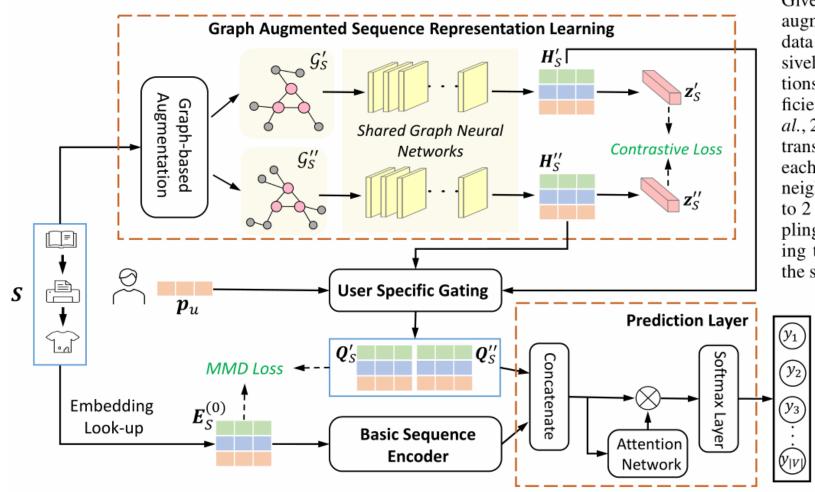


$$\mathbf{S} = \sum_{k=0}^{\infty} \theta_k \mathbf{T}^k \in \mathbb{R}^{N \times N} \tag{1}$$

where θ_k is the weighting coefficient to control the proportion of local and global structure information and $\mathbf{T} \in \mathbb{R}^{N \times N}$ denotes the generalized transition matrix to transfer the adjacency matrix. Note that $\theta_k \in [0,1]$ and $\sum_{k=0}^{\infty} \theta_k = 1$. In this paper, Personalized PageRank (PPR) [Page *et al.*, 1999] is adopted to power the graph diffusion. Given the adjacency matrix $\mathbf{A} \in \mathbb{R}^{N \times N}$, the identity matrix \mathbf{I} and its degree matrix \mathbf{D} , the transition matrix and the weight can be formulated respectively as $\mathbf{T} = \mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2}$ and $\theta_k = \alpha(1-\alpha)^k$. Then the graph diffusion \mathbf{S} can be reformulated as:

$$\mathbf{S} = \alpha (\mathbf{I} - (1 - \alpha)\mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2})^{-1}$$
 (2)

2022_IJCAI_Enhancing Sequential Recommendation with Graph Contrastive Learning



Graph-based Augmentation

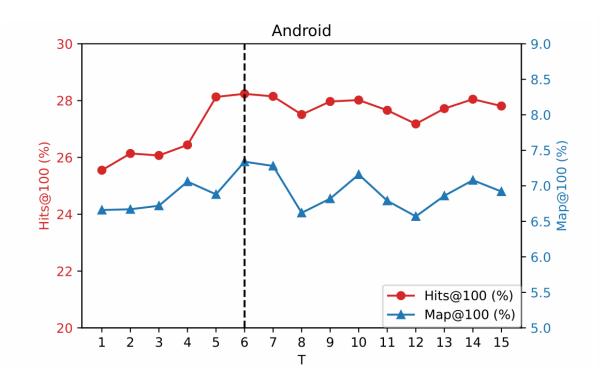
Given the weighted transition graph \mathcal{G} , we first construct two augmented graph views for an interaction sequence S through data augmentation. The motivation is to create comprehensively and realistically rational data via certain transformations on the original sequence. In this work, we use the efficient neighborhood sampling method used in [Hamilton et al., 2017] to generate the augmented graph views from a large transition graph for a given sequence. Specifically, we treat each node $v \in S$ as a central node and interatively sample its neighbors in \mathcal{G} by empirically setting the sampling depth M to 2 and the sampling size N at each step to 20. In the sampling process, we uniformly sample nodes without considering the edge weights, and then preserve the edges between the sampled nodes and their weights in \mathcal{G} . For a particular se-

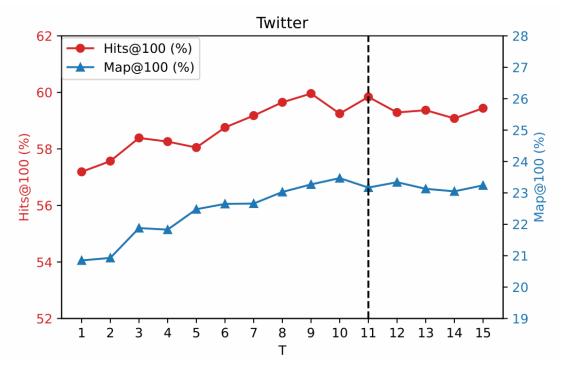
- **Random Crop** (crop): It randomly selects a continuous subsequence from positions i to $i + l_c$ from s_u and removes it. l_c is defined by $l_c = i + \lfloor \mu_c \cdot |s_u| \rfloor$ where μ_c (0 < $\mu_c \le 1$) is a hyperparameter. The cropped sequence is defined by: $s_u^c = [v_i^u, v_{i+1}^u, \dots, v_{i+l_c}^u]$.
- Random Mask (mask): It randomly selects a proportion μ_m of items from s_u to be masked. Let $g^m(1), g^m(2), \dots, g^m(n_u^m)$ be the indexes of the items to be masked where $n_u^m = \lfloor \mu_m \cdot |s_u| \rfloor$ and $g^m(x) \in [1, |s_u|]$. An item v_i is replaced with the mask item [m] if selected to be masked. The masked sequence is thus: $s_u^{\max} = [v_1^u, \dots, v_{g^m(1)-1}^u, [m], v_{g^m(1)+1}^u, \dots, v_{g^m(n_u^m)-1}^u, [m], v_{g^m(n_u^m)+1}^u, \dots, v_{|s_u|}^u]$.
- Random Reorder (rord): It first randomly selects a continuous sub-sequence $[v_i^u, v_{i+1}^u, \dots, v_{i+l_r}^u]$ of length $l_r = \lfloor \mu_r * |s_u| \rfloor$ ($0 \le \mu_r \le 1$). It then randomly shuffles the items in the subsequence. Suppose the reordered items, sorted by new positions, are $[\tilde{v}_i^u, \dots, \tilde{v}_{i+l_r}^u]$. The reordered sequence is thus: $s_r^{\text{rord}} = [v_1^u, \dots, v_{i+l_r}^u, \tilde{v}_i^u, \tilde{v}_{i+1}^u, \dots, \tilde{v}_{i+l_r}^u, v_{i+l_r+1}^u, \dots, v_{i+l_r+1}^u]$.

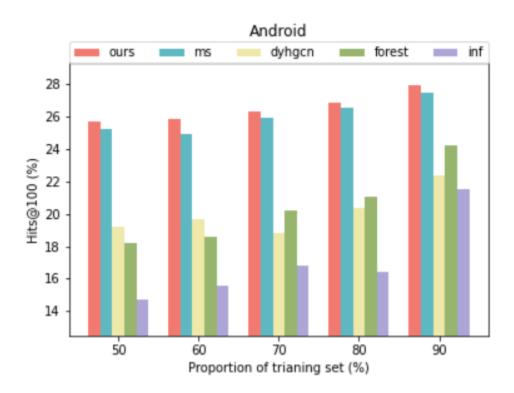
 $s_u^{\text{rord}} = [v_1^u, \cdots, v_{i-1}^u, \tilde{v}_i^u, \tilde{v}_{i+1}^u, \cdots, \tilde{v}_{i+l_r}^u, v_{i+l_r+1}^u, \cdots, v_{|s_u|}^u].$

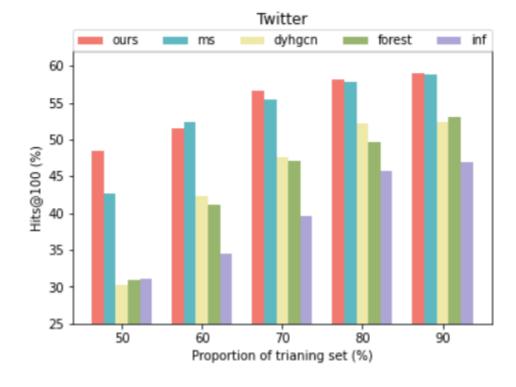
• Random Retrieval (rtrl): This operation randomly selects another user sequence $s_{u'}$ that shares the same target (or next) item as the input sequence s_u , i.e., $v_*^u = v_*^{u'}$. The retrieved sequence is thus: $s_u^{\text{rtrl}} = s_{u'}$, s.t. $v_*^u = v_*^{u'}$

	Twitter		Douban		And	lroid	Chris		
指标	hits@100	map@100	hits@100	map@100	hits@100	map@100	hits@100	map@100	
C-L	59.33	23.24	44.18	13.46	27.40	6.83	54.24	17.50	
Social	58.68	22.19	43.49	12.63	28.05	7.06	54.83	18.21	
H-G	59.77	23.05	44.32	13.04	28.13	7.08	54.36	17.74	
D-G	59.42	23.17	44.15	13.43	27.17	6.91	55.22	18.17	
FA	59.01	22.67	43.26	12.77	27.47	6.92	55.31	18.21	
ALL	59.96	23.47	44.39	13.57	28.24	7.34	55.81	18.84	









	and	roid	twi	tter	Chris	tianity	dou	ıban
depth	hits@100	map@100	hits@100	map@100	hits@100	map@100	hits@100	map@100
l=0	27.85	7.06	58.18	22.37	55.17	18.09	43.56	12.64
l=1	28.24	7.34	59.53	23.11	55.81	18.84	44.24	13.41
l=2	28.17	7.32	59.96	23.47	55.42	18.42	44.39	13.57
l=3	28.06	7.21	59.68	23.25	55.22	18.23	44.31	13.45

